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Skew-Polynomial Rings

» [y, finite field.
» 0, automorphism of IFy.

Fylx,0] = {ao + aix + -+ ap_1x""ta; € F; and ne N}

o Addition : like in Fg[x]
o Multiplication : x-a=#6(a)x,a e F,.
» The ring Fq[x, 0] is noncommutative unless § is the identity
automorphism on Fq(Ore, 1933).
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Skew-Polynomial Rings

Consider the finite field F4 = {0,1, o, @®} where a® + a+1 = 0.
Consider the Frobenius automorphism

0 : F4 — ]F4
a — a

(ax) - (a®x) = a®x
= (ax)-(a?x) # (a?x) - (ax) = ax?
(a?x) - (ax) = ax
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» A skew polynomial ring Fg[x, 6] is a right Euclidean ring and a
left Euclidean ring (McDonald).
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Skew-Polynomial Rings

» A skew polynomial ring Fg[x, 6] is a right Euclidean ring and a
left Euclidean ring (McDonald).

> h* = Z;(:o 0'(hi_;)x" : The skew reciprocal polynomial of
h(hx # 0)

» h? = (1/6%(ho))h* : The left monic skew reciprocal
polynomial of h(hg # 0)

» Let § € Aut(Fq) . Then the map :

o Fqlx,0] — Fq[x,0] _
| Xieaix! = Y g0(an)x

is a morphism of rings.
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Skew-Polynomial Rings

Example ((Boucher and Ulmer, 2009))

Consider F4[x; 0] where 6 is the Frobenius automorphism .
x4+ x24+1 X4+ x+1)- (x> +x4+1)

x? +a?) - (x? +a)

X —l—a) (x* + a?)

X2+ a?x+1)-(x®>+a?x+1)

= (x
= (x>
= (x>
= (x*
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Linear codes

» A linear code C is a k-dimensional vector subspace of (Fg)".

» The minimum distance of a code C :

dH(C) = min{dH(c,-, Cj)‘C,', ¢ € C,c 75 Cj}.

Definitions

» C is skew \-constacyclic, if C is for all
(Co7 Cilyoooq Cn_1) e C, ()\H(Cn_l), Q(Co), 000y Q(Cn_g)) e C.
» C is reversible, if C is for all (co,c1,...,¢cn-1) € C,
(ch-1,Cn—2,...,¢0) € C.
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Duals of skew constacyclic codes over [,

» The Euclidean dual:
cle ={xeFy|Vye C,<x,y>g=0}

<X, Y >E= Y XY

» The Euclidean dual C£ of C is generated by hf.
Assume that g = r? is an even power of an arbitrary prime
and denote for a in Fy, a = a".

» The Hermitian dual:
CH ={xeF]|Vy e C <x,y>y=0}
<X,y >H= Yy XiYi

» The Hermitian dual C1# of C is ggnerated by ht where for

a(x) =Y aix' € R, a(x) :== > ajx".
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Skew generator polynomials of LCD skew Eyclic and negacyclic cod

O"(h)-g=x"-Aeg-h=x"—0"%\). (1)
h : skew check polynomial of C.
@ The dual C* of Cis a (6,1/))-constacyclic code
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Skew generator polynomials of LCD skew cyclic and

negacyclic codes (\? = 1)

Theorem ((Boulanouar, Batoul, and Boucher, 2020))

Consider a (6, \)-constacyclic code C with length n, skew
generator polynomial g. Consider h in R such that
©"(h)-g=x" -\

e C is a Euclidean LCD code if and only if GCRD(g, h") = 1.
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Background

Skew generator polynomials of LCD skew cyclic and

negacyclic codes (\? = 1)

Theorem ((Boulanouar, Batoul, and Boucher, 2020))

Consider a (6, \)-constacyclic code C with length n, skew
generator polynomial g. Consider h in R such that
©"(h)-g=x" -\

o C is a Euclidean LCD code if and only if GCRD(g, h?) =

@ If g is an even power of a prime number, g = r?, C is a
Hermitian LCD code if and only if GCRD(g, hl) =1
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Reversible codes

In commutative case:

The cyclic code generated by the monic polynomial g is
reversible if and only if g(x) is self-reciprocal (i.e g(x) =
g%(x)). Furthermore, if g is coprime with n, a cyclic code of
length nis LCD if and only if C is reversible .
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Background

In_ noncommutative case:

Is it necessarily the case for skew cyclic codes when 6 is not
the identity?

12 /21



Polynomial Rings
lic
Duals of onstacyclic codes over Fy
Skew generator polynomials of LCD skew cyclic and negacyclic cod

Background

Example

Let Fg = F3(w) where w? = w + 1, 6 the Frobenius automorphism
and R = Fyg[x; 0]. We have :

x? —1=(x+ w?)(x + w?)
The skew polynomial g = x + w? is such that g(x) = g#(x). The

greatest common right divisor of g(x) and h*(x) is x + w? (i.e
gerd(g(x), h*(x)) # 1) therefore, C is not an LCD code.
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Duals of skew constacyclic codes over Fg
Skew generator polynomials of LCD skew cyclic and negacyclic cod:

Skew reversible codes

@ The code C is called a skew reversible code if

Vee C c=(cp,..-,Cn1) € C = (c,,_l,...,Q"_l(co)) eC

@ If g is an even power of a prime number, g = p?, Cis a
conjugate-skew reversible code if

Vcee C c=(c,...,cn-1) € C = (c,,,l,...,G”_l(cT))) eC
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Skew reversible codes

If skew constacyclic code C is skew ieversible( resp. conjugate-skew
reversible), then g = g¥(resp. g = g%).

For Fg = IF3(w) where w? = w + 1 and 6 the Frobenius
automorphism @ : a — a°. In Fg[x; 0] the polynomial x® — 1 has
two skew reversible codes generated by a proper central :

g1(x) = x> +2and go(x) = x* + x> + 1.
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NOTATIONS

Let f,g in R such that gcrd(f(x),g(x)) =1,

Alf.g) = |
{(a(x), b(x)) € R? | a(x)f(x) + b(x)g(x) = 1 and b(x)g(x) = g(x)b(x)
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Consider g, hin R and A € {—1,1} such that
x"—X=g-h=h-g with deg(h) = k.

» Assume that A, gb(s+)) is nonempty. Then g = Ok+b(gh) for
all b in {0,1}.
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» Assume that A, gb(s+)) is nonempty. Then g = Ok+b(gh) for
all bin {0,1}.
» If the greatest common right divisor of h(x) and g(x) is equal
to 1, go in FY and g = Ok+P(gh) then
gerd(g(x), ©2(h¥(x)))) = 1 for all bin {0,1}.
» If the greatest common left divisor of g and h is equal to 1

and if g = ©°(g"), then gcrd(g(x), ©°(h*(x))) =1 for all b
in {0,1}.
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Main result

» If the greatest common left divisor of h(x) and g(x) is equal
to 1 and g = ©°(g?) then C is an Euclidean LCD skew
constacyclic code when b =0 and C is an Hermitian LCD
skew constacyclic code when b = 1.
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Main result

» If the greatest common left divisor of h(x) and g(x) is equal
to 1 and g = ©°(g?) then C is an Euclidean LCD skew
constacyclic code when b =0 and C is an Hermitian LCD
skew constacyclic code when b = 1.

» If the greatest common left divisor of h(x) and g(x) is equal
to 1 and C is a skew reversible code (resp.conjugate-skew
reversible code) then C is an Euclidean LCD skew constacyclic
code (resp. C is an Hermitian LCD skew constacyclic code ).
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