The skew reversible codes over finite fields

Ranya Djihad Boulanouar

University of Science and Technology Houari Boumediene Joint work with Dr. Aicha Batoul, Dr. Delphine Boucher NCRA-2021

July 6, 2021
(2) Tools and results
(3) Main result

Motivation

- Boucher, Geiselmann, and Ulmer. \Longrightarrow Construction of skew cyclic codes.

Motivation

- Boucher, Geiselmann, and Ulmer. \Longrightarrow Construction of skew cyclic codes.
- Ore. \Longrightarrow If θ is not the identity, then $\mathbb{F}_{q}[x, \theta]$ is not a unique factorization ring.

Motivation

- Boucher, Geiselmann, and Ulmer. \Longrightarrow Construction of skew cyclic codes.
\triangleright Ore. \Longrightarrow If θ is not the identity, then $\mathbb{F}_{q}[x, \theta]$ is not a unique factorization ring.
- Massey. \Longrightarrow Linear codes with complementary duals.

Motivation

- Boucher, Geiselmann, and Ulmer. \Longrightarrow Construction of skew cyclic codes.
\triangleright Ore. \Longrightarrow If θ is not the identity, then $\mathbb{F}_{q}[x, \theta]$ is not a unique factorization ring.
- Massey. \Longrightarrow Linear codes with complementary duals.
- Massey and Yang. \Longrightarrow Reversible codes.

Motivation

- Boucher, Geiselmann, and Ulmer. \Longrightarrow Construction of skew cyclic codes.
\triangleright Ore. \Longrightarrow If θ is not the identity, then $\mathbb{F}_{q}[x, \theta]$ is not a unique factorization ring.
- Massey. \Longrightarrow Linear codes with complementary duals.
- Massey and Yang. \Longrightarrow Reversible codes.

Question

What is the relationship between skew LCD codes and skew reversible codes?

Skew-Polynomial Rings $\mathbb{F}_{q}[x, \theta]$
Skew constacyclic codes over \mathbb{F}_{q} Duals of skew constacyclic codes over \mathbb{F}_{q}
Skew generator polynomials of LCD skew cyclic and negacyclic cod

Skew-Polynomial Rings

$-\mathbb{F}_{q}$, finite field.

Skew-Polynomial Rings

- \mathbb{F}_{q}, finite field.
- θ, automorphism of \mathbb{F}_{q}.

$$
\mathbb{F}_{q}[x, \theta]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \mid a_{i} \in \mathbb{F}_{q} \text { and } n \in \mathbb{N}\right\} .
$$

Skew-Polynomial Rings

- \mathbb{F}_{q}, finite field.
- θ, automorphism of \mathbb{F}_{q}.

$$
\mathbb{F}_{q}[x, \theta]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \mid a_{i} \in \mathbb{F}_{q} \text { and } n \in \mathbb{N}\right\} .
$$

- Addition : like in $\mathbb{F}_{q}[x]$

Skew-Polynomial Rings

- \mathbb{F}_{q}, finite field.
- θ, automorphism of \mathbb{F}_{q}.

$$
\mathbb{F}_{q}[x, \theta]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \mid a_{i} \in \mathbb{F}_{q} \text { and } n \in \mathbb{N}\right\} .
$$

- Addition : like in $\mathbb{F}_{q}[x]$
- Multiplication : $x \cdot a=\theta(a) x, a \in \mathbb{F}_{q}$.

Skew-Polynomial Rings

- \mathbb{F}_{q}, finite field.
- θ, automorphism of \mathbb{F}_{q}.

$$
\mathbb{F}_{q}[x, \theta]=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \mid a_{i} \in \mathbb{F}_{q} \text { and } n \in \mathbb{N}\right\} .
$$

- Addition: like in $\mathbb{F}_{q}[x]$
- Multiplication : $x \cdot a=\theta(a) x, a \in \mathbb{F}_{q}$.
- The ring $\mathbb{F}_{q}[x, \theta]$ is noncommutative unless θ is the identity automorphism on \mathbb{F}_{q} (Ore, 1933).

Skew-Polynomial Rings

Example

Consider the finite field $\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}\right\}$ where $\alpha^{2}+\alpha+1=0$. Consider the Frobenius automorphism

$$
\begin{array}{rlll}
\theta: & \mathbb{F}_{4} & \rightarrow \mathbb{F}_{4} \\
& a & \rightarrow & a^{2}
\end{array}
$$

$(\alpha x) \cdot\left(\alpha^{2} x\right)=\alpha^{2} x^{2}$

$$
\Longrightarrow \quad(\alpha x) \cdot\left(\alpha^{2} x\right) \neq\left(\alpha^{2} x\right) \cdot(\alpha x)=\alpha x^{2}
$$

$$
\left(\alpha^{2} x\right) \cdot(\alpha x)=\alpha x^{2}
$$

Skew-Polynomial Rings

- A skew polynomial ring $\mathbb{F}_{q}[x, \theta]$ is a right Euclidean ring and a left Euclidean ring (McDonald).

Skew-Polynomial Rings

- A skew polynomial ring $\mathbb{F}_{q}[x, \theta]$ is a right Euclidean ring and a left Euclidean ring (McDonald).
- $h^{*}=\sum_{i=0}^{k} \theta^{i}\left(h_{k-i}\right) x^{i}$: The skew reciprocal polynomial of $h\left(h_{k} \neq 0\right)$

Skew-Polynomial Rings

- A skew polynomial ring $\mathbb{F}_{q}[x, \theta]$ is a right Euclidean ring and a left Euclidean ring (McDonald).
- $h^{*}=\sum_{i=0}^{k} \theta^{i}\left(h_{k-i}\right) x^{i}$: The skew reciprocal polynomial of $h\left(h_{k} \neq 0\right)$
- $h^{\natural}=\left(1 / \theta^{k}\left(h_{0}\right)\right) h^{*}$: The left monic skew reciprocal polynomial of $h\left(h_{0} \neq 0\right)$

Skew-Polynomial Rings

- A skew polynomial ring $\mathbb{F}_{q}[x, \theta]$ is a right Euclidean ring and a left Euclidean ring (McDonald).
- $h^{*}=\sum_{i=0}^{k} \theta^{i}\left(h_{k-i}\right) x^{i}$: The skew reciprocal polynomial of $h\left(h_{k} \neq 0\right)$
- $h^{\natural}=\left(1 / \theta^{k}\left(h_{0}\right)\right) h^{*}$: The left monic skew reciprocal polynomial of $h\left(h_{0} \neq 0\right)$
- Let $\theta \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$. Then the map :

$$
\Theta:\left\{\begin{array}{rll}
\mathbb{F}_{q}[x, \theta] & \rightarrow \mathbb{F}_{q}[x, \theta] \\
\sum_{i=0}^{n} a_{i} x^{i} & \mapsto & \sum_{i=0}^{n} \theta\left(a_{i}\right) x^{i}
\end{array}\right.
$$

is a morphism of rings.

Skew-Polynomial Rings

Example ((Boucher and Ulmer, 2009))

Consider $\mathbb{F}_{4}[x ; \theta]$ where θ is the Frobenius automorphism .

$$
\begin{aligned}
x^{4}+x^{2}+1 & =\left(x^{2}+x+1\right) \cdot\left(x^{2}+x+1\right) \\
& =\left(x^{2}+\alpha^{2}\right) \cdot\left(x^{2}+\alpha\right) \\
& =\left(x^{2}+\alpha\right) \cdot\left(x^{2}+\alpha^{2}\right) \\
& =\left(x^{2}+\alpha^{2} x+1\right) \cdot\left(x^{2}+\alpha^{2} x+1\right)
\end{aligned}
$$

Linear codes

- A linear code C is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.

Definitions

Linear codes

- A linear code C is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.
- The minimum distance of a code C :

$$
d_{H}(C)=\min \left\{d_{H}\left(c_{i}, c_{j}\right) \mid c_{i}, c_{j} \in C, c_{i} \neq c_{j}\right\} .
$$

Definitions

Linear codes

- A linear code C is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.
- The minimum distance of a code C :

$$
d_{H}(C)=\min \left\{d_{H}\left(c_{i}, c_{j}\right) \mid c_{i}, c_{j} \in C, c_{i} \neq c_{j}\right\} .
$$

Definitions

- C is skew λ-constacyclic, if C is for all $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C,\left(\lambda \theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \ldots, \theta\left(c_{n-2}\right)\right) \in C$.

Linear codes

- A linear code C is a k-dimensional vector subspace of $\left(\mathbb{F}_{q}\right)^{n}$.
- The minimum distance of a code C :

$$
d_{H}(C)=\min \left\{d_{H}\left(c_{i}, c_{j}\right) \mid c_{i}, c_{j} \in C, c_{i} \neq c_{j}\right\}
$$

Definitions

- C is skew λ-constacyclic, if C is for all $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C_{,}\left(\lambda \theta\left(c_{n-1}\right), \theta\left(c_{0}\right), \ldots, \theta\left(c_{n-2}\right)\right) \in C$.
- C is reversible, if C is for all $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, $\left(c_{n-1}, c_{n-2}, \ldots, c_{0}\right) \in C$.

Duals of skew constacyclic codes over \mathbb{F}_{q}

- The Euclidean dual:

$$
C^{\perp_{E}}=\left\{x \in \mathbb{F}_{q}^{n} \mid \forall y \in C,<x, y>_{E}=0\right\}
$$

$$
<x, y>_{E}:=\sum_{i=1}^{n} x_{i} y_{i}
$$

- The Euclidean dual $C^{\perp_{E}}$ of C is generated by h^{\natural}.

Assume that $q=r^{2}$ is an even power of an arbitrary prime and denote for a in $\mathbb{F}_{q}, \bar{a}=a^{r}$.

- The Hermitian dual:

$$
\begin{aligned}
& C^{\perp_{H}}=\left\{x \in \mathbb{F}_{q}^{n} \mid \forall y \in C,<x, y>_{H}=0\right\} \\
& <x, y>_{H}:=\sum_{i=1}^{n} x_{i} \bar{y}_{i}
\end{aligned}
$$

- The Hermitian dual $C^{\perp_{H}}$ of C is generated by $\overline{h^{\natural}}$ where for $a(x)=\sum a_{i} x^{i} \in R, \overline{a(x)}:=\sum \overline{a_{i}} x^{i}$.

$$
\begin{equation*}
\Theta^{n}(h) \cdot g=x^{n}-\lambda \Leftrightarrow g \cdot h=x^{n}-\theta^{-k}(\lambda) . \tag{1}
\end{equation*}
$$

h : skew check polynomial of C.

- The dual C^{\perp} of C is a $(\theta, 1 / \lambda)$-constacyclic code

Skew generator polynomials of LCD skew cyclic and negacyclic codes $\left(\lambda^{2}=1\right)$

Theorem ((Boulanouar, Batoul, and Boucher, 2020))

Consider a (θ, λ)-constacyclic code C with length n, skew generator polynomial g. Consider h in R such that $\Theta^{n}(h) \cdot g=x^{n}-\lambda$.

- C is a Euclidean $L C D$ code if and only if $\operatorname{GCRD}\left(g, h^{\natural}\right)=1$.

Skew generator polynomials of LCD skew cyclic and negacyclic codes $\left(\lambda^{2}=1\right)$

Theorem ((Boulanouar, Batoul, and Boucher, 2020))

Consider a (θ, λ)-constacyclic code C with length n, skew generator polynomial g. Consider h in R such that $\Theta^{n}(h) \cdot g=x^{n}-\lambda$.

- C is a Euclidean LCD code if and only if $\operatorname{GCRD}\left(g, h^{\natural}\right)=1$.
- If q is an even power of a prime number, $q=r^{2}, C$ is a Hermitian LCD code if and only if $\operatorname{GCRD}\left(g, \overline{h^{\natural}}\right)=1$.

Reversible codes

In commutative case:
The cyclic code generated by the monic polynomial g is reversible if and only if $g(x)$ is self-reciprocal (i.e $g(x)=$ $g^{\sharp}(x)$). Furthermore, if q is coprime with n, a cyclic code of length n is LCD if and only if C is reversible.

In noncommutative case:

Is it necessarily the case for skew cyclic codes when θ is not the identity?

Example

Let $\mathbb{F}_{9}=\mathbb{F}_{3}(w)$ where $w^{2}=w+1, \theta$ the Frobenius automorphism and $R=\mathbb{F}_{9}[x ; \theta]$. We have :

$$
x^{2}-1=\left(x+w^{2}\right)\left(x+w^{2}\right)
$$

The skew polynomial $g=x+w^{2}$ is such that $g(x)=g^{\sharp}(x)$. The greatest common right divisor of $g(x)$ and $h^{*}(x)$ is $x+w^{2}$ (i.e $\left.\operatorname{gcrd}\left(g(x), h^{*}(x)\right) \neq 1\right)$ therefore, C is not an LCD code.

Skew reversible codes

Definition

(1) The code C is called a skew reversible code if

$$
\forall c \in C \quad c=\left(c_{0}, \ldots, c_{n-1}\right) \in C \Longrightarrow\left(c_{n-1}, \ldots, \theta^{n-1}\left(c_{0}\right)\right) \in C
$$

(2) If q is an even power of a prime number, $q=p^{2}, C$ is a conjugate-skew reversible code if

$$
\forall c \in C \quad c=\left(c_{0}, \ldots, c_{n-1}\right) \in C \Longrightarrow\left(\overline{c_{n-1}}, \ldots, \theta^{n-1}\left(\overline{c_{0}}\right)\right) \in C
$$

Skew reversible codes

Theorem

If skew constacyclic code C is skew reversible(resp. conjugate-skew reversible), then $g=g^{\natural}$ (resp. $g=\overline{g^{\natural}}$).

Example

For $\mathbb{F}_{9}=\mathbb{F}_{3}(w)$ where $w^{2}=w+1$ and θ the Frobenius automorphism $\theta: a \mapsto a^{3}$. In $\mathbb{F}_{9}[x ; \theta]$ the polynomial $x^{6}-1$ has two skew reversible codes generated by a proper central : $g_{1}(x)=x^{2}+2$ and $g_{2}(x)=x^{4}+x^{2}+1$.

NOTATIONS

Let f, g in R such that $\operatorname{gcrd}(f(x), g(x))=1$,
$\left\{(a(x), b(x)) \in R^{2} \mid a(x) f(x)+b(x) g(x)=1\right.$ and $\left.b(x) g(x)=g(x) b(x)\right\}$

Tools

Consider g, h in R and $\lambda \in\{-1,1\}$ such that $x^{n}-\lambda=g \cdot h=h \cdot g$ with $\operatorname{deg}(h)=k$.

- Assume that $A_{\left(g, \Theta^{b}\left(h^{*}\right)\right)}$ is nonempty. Then $g=\Theta^{k+b}\left(g^{\natural}\right)$ for all b in $\{0,1\}$.

Tools

Consider g, h in R and $\lambda \in\{-1,1\}$ such that $x^{n}-\lambda=g \cdot h=h \cdot g$ with $\operatorname{deg}(h)=k$.

- Assume that $A_{\left(g, \Theta^{b}\left(h^{*}\right)\right)}$ is nonempty. Then $g=\Theta^{k+b}\left(g^{\natural}\right)$ for all b in $\{0,1\}$.
- If the greatest common right divisor of $h(x)$ and $g(x)$ is equal to $1, g_{0}$ in \mathbb{F}_{q}^{θ} and $g=\Theta^{k+b}\left(g^{\natural}\right)$ then $\left.\operatorname{gcrd}\left(g(x), \Theta^{b}\left(h^{\natural}(x)\right)\right)\right)=1$ for all b in $\{0,1\}$.

Tools

Consider g, h in R and $\lambda \in\{-1,1\}$ such that $x^{n}-\lambda=g \cdot h=h \cdot g$ with $\operatorname{deg}(h)=k$.

- Assume that $A_{\left(g, \Theta^{b}\left(h^{*}\right)\right)}$ is nonempty. Then $g=\Theta^{k+b}\left(g^{\natural}\right)$ for all b in $\{0,1\}$.
- If the greatest common right divisor of $h(x)$ and $g(x)$ is equal to $1, g_{0}$ in \mathbb{F}_{q}^{θ} and $g=\Theta^{k+b}\left(g^{\natural}\right)$ then $\left.\operatorname{gcrd}\left(g(x), \Theta^{b}\left(h^{\natural}(x)\right)\right)\right)=1$ for all b in $\{0,1\}$.
- If the greatest common left divisor of g and h is equal to 1 and if $g=\Theta^{b}\left(g^{\natural}\right)$, then $\operatorname{gcrd}\left(g(x), \Theta^{b}\left(h^{\natural}(x)\right)\right)=1$ for all b in $\{0,1\}$.

Main result

- If $A_{\left(g, h^{*}\right)}$ is nonempty and if C is an Euclidean LCD skew constacyclic code then $g=\Theta^{k}\left(g^{\natural}\right)$.

Main result

- If $A_{\left(g, h^{*}\right)}$ is nonempty and if C is an Euclidean LCD skew constacyclic code then $g=\Theta^{k}\left(g^{\natural}\right)$.
- If $A_{\left(g, \Theta\left(h^{*}\right)\right)}$ is nonempty and if C is an Hermitian LCD skew constacyclic code then $g=\Theta^{k+1}\left(g^{\natural}\right)$.

Main result

- If $A_{\left(g, h^{*}\right)}$ is nonempty and if C is an Euclidean LCD skew constacyclic code then $g=\Theta^{k}\left(g^{\natural}\right)$.
- If $A_{\left(g, \Theta\left(h^{*}\right)\right)}$ is nonempty and if C is an Hermitian LCD skew constacyclic code then $g=\Theta^{k+1}\left(g^{\natural}\right)$.
- If the greatest common right divisor of $h(x)$ and $g(x)$ is equal to $1, g_{0}$ in \mathbb{F}_{q}^{θ} and $g(x)=\Theta^{k+b}\left(g^{\natural}(x)\right)$ then C is an Euclidean LCD skew constacyclic code when $b=0$ and C is an Hermitian LCD skew constacyclic code when $b=1$.
- If the greatest common left divisor of $h(x)$ and $g(x)$ is equal to 1 and $g=\Theta^{b}\left(g^{\natural}\right)$ then C is an Euclidean LCD skew constacyclic code when $b=0$ and C is an Hermitian LCD skew constacyclic code when $b=1$.
- If the greatest common left divisor of $h(x)$ and $g(x)$ is equal to 1 and $g=\Theta^{b}\left(g^{\natural}\right)$ then C is an Euclidean LCD skew constacyclic code when $b=0$ and C is an Hermitian LCD skew constacyclic code when $b=1$.
- If the greatest common left divisor of $h(x)$ and $g(x)$ is equal to 1 and C is a skew reversible code (resp.conjugate-skew reversible code) then C is an Euclidean LCD skew constacyclic code (resp. C is an Hermitian LCD skew constacyclic code).

REFERENCES

围 Boucher，D．，W．Geiselmann，and F．Ulmer（2007）．＂Skew cyclic codes＂．In：Applicable Algebra in Engineering，Communication and Computing 18，pp．379－389．
（ Boulanouar，R．D．，A．Batoul，and D．Boucher（2020）．＂An Overview on Skew Constacyclic Codes and their Subclass of LCD Codes＂．In：Advances in Mathematics of Communications． DOI：10．3934／amc． 2020085.
目 Massey，J．L．（1992）．＂Linear codes with complementary duals＂． In：Discrete Mathematics 106，pp．337－342．
嗇 Massey，J．L．and X．Yang（1994）．＂The condition for a cyclic code to have a complementary dual＂．In：Discrete Mathematics 126， pp．391－393．

Finaly

OTHANIKS $\mathbb{F O R}$ YOUR ATTENTIONO

